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Abstract

Given n independent replicates of a jointly distributed pair (X,Y ) ∈ Rd×R, we wish

to select from a fixed sequence of model classes F1,F2, . . . a deterministic prediction rule

f : Rd → R whose risk is small. We investigate the possibility of empirically assessing

the complexity of each model class, that is, the actual difficulty of the estimation problem

within each class. The estimated complexities are in turn used to define an adaptive

model selection procedure, which is based on complexity penalized empirical risk.

The available data are divided into two parts. The first is used to form an empirical

cover of each model class, and the second is used to select a candidate rule from each

cover based on empirical risk. The covering radii are determined empirically to optimize

a tight upper bound on the estimation error. An estimate is chosen from the list of

candidates in order to minimize the sum of class complexity and empirical risk. A

distinguishing feature of the approach is that the complexity of each model class is

assessed empirically, based on the size of its empirical cover.

Finite sample performance bounds are established for the estimates, and these

bounds are applied to several non-parametric estimation problems. The estimates are

shown to achieve a favorable tradeoff between approximation and estimation error, and

to perform as well as if the distribution-dependent complexities of the model classes were

known beforehand. In addition, it is shown that the estimate can be consistent, and

even possess near optimal rates of convergence, when each model class has an infinite

VC or pseudo dimension.

For regression estimation with squared loss we modify our estimate to achieve a

faster rate of convergence.
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1 Introduction

Let (X,Y ) ∈ Rd × R be a jointly distributed pair, where X represents the outcomes of

several real or vector-valued predictors that are related to a real-valued response Y of

interest. The relationship between X and Y will generally be stochastic: Y is not assumed

to be a function of X. Any measurable function f : Rd → R acts as a deterministic

prediction rule if f(X) is used to estimate the value of Y .

Let ℓ : R × R → [0,∞) be a nonnegative loss function having the interpretation that

ℓ(y′, y) measures the loss (or cost) incurred when the true value Y = y is predicted to be

y′. The performance of a prediction rule f will be assessed in terms of its expected loss, or

risk,

L(f) = Eℓ(f(X), Y ) .

The risk of every prediction rule is bounded below by the optimum value

L∗ = inf
f
L(f) ≥ 0 ,

where the infimum is taken over all measurable functions f : Rd → R. Throughout the

paper it is assumed that (X,Y ) is such that ℓ(f(X), Y ) ∈ [0, 1] with probability one.

Constructing a good prediction rule from a finite data set is an important problem in

both parametric and non-parametric statistics. Put more precisely, the task is as follows:

Given a data set Tn = (X1, Y1), . . . , (Xn, Yn) containing n i.i.d. replicates of the

pair (X,Y ), select a prediction rule f : Rd → R whose risk is small, in the sense

that L(f) ≈ L∗.

For convenience, the notation Z = (X,Y ), Zi = (Xi, Yi), and Zn
1 = Tn will be used in what

follows.

1.1 Complexity of a model class

Many approaches to the general estimation problem restrict their search for a prediction rule

to a constrained collection of functions F containing a finite or infinite number of prediction

rules. In such cases it is natural to replace the unknown joint distribution of (X,Y ) by the

empirical distribution of Tn, and to evaluate the performance of each prediction rule f ∈ F
in terms of its empirical loss

L̂n(f) =
1

n

n∑

i=1

ℓ(f(Xi), Yi) .

Selecting a rule f ∈ F in order to minimize L̂n(f) is known as empirical risk minimization.

To avoid minimization over an infinite set, one may discretize the class F . A simple but
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suboptimal procedure is the following: Fix a positive number r, and select a finite subset

Fr = {f1, . . . , fN} of F such that for all f ∈ F there exists a g ∈ Fr with

sup
x∈Rd,y∈R

|ℓ(f(x), y) − ℓ(g(x), y)| ≤ r.

(We assume for now that such a finite covering exists.) The smallest N such that this is

possible is called the r-covering number of the class of functions

H = {h(x, y) = ℓ(f(x), y) : f ∈ F}

with respect to the supremum norm. Denote this quantity by Nr, and assume that |Fr| =

Nr.

If fn is that element of Fr having minimal empirical risk, then one may readily show

that

EL(fn) − inf
f∈F

L(f) ≤ r + 2E

{
max
f∈Fr

∣∣∣L̂n(f) − L(f)
∣∣∣
}
≤ r +

√
2 lnNr

n
. (1)

The second inequality follows from the boundedness of the loss function, Hoeffding’s (1963)

inequality for the moment generating function of a sum of independent bounded random

variables, and a standard bounding trick explained, for example, in Pollard (1989).

Since Nr is a monotone decreasing function of r, selecting the covering radius r such that

r ≈
√

(2/n) logNr approximately minimizes the upper bound (1). Indeed, if one defines

r′ = inf
{
r > 0 : r ≥

√
(2/n) logNr

}
, then

EL(fn) − inf
f∈F

L(f) ≤ 2r′ ≤ 2 inf
r



r +

√
2 logNr

n



 .

Thus r′ might be called the balanced covering radius of the class F (with respect to the

supremum norm). The quantity 2r′ is a distribution-free upper bound on the difficulty

of estimation in F , and as such, r′ may be considered as a measure of the complexity of

F . Though bounding the estimation error by r′ may seem to be quite crude, it is often

close to the best achievable distribution-free upper bound. In fact, the minimax rate of

convergence is in many cases proportional to r′ (see, e.g., Nicoleris and Yatracos (1997),

Yang and Barron (1997)). Nevertheless, one may significantly improve the upper bound

above in a distribution-dependent fashion.

Definition: Let G be a family of functions g : S → R, let sn
1 = s1, . . . , sn be a sequence of

points in S, and let r > 0. A subset G0 ⊆ G is called an empirical cover of G on sn
1 with

radius r if for every g ∈ G there exists a function g′ ∈ G0 such that

1

n

n∑

j=1

|g(sj) − g′(sj)| ≤ r .
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The covering number N(sn
1 , r,G) is the size of the smallest r-cover of G on sn

1 . If no finite

r-cover exists then N(sn
1 , r,G) = ∞. If S1, . . . , Sn are n random elements taking values in

S, the covering number N(Sn
1 , r,G) is a positive integer-valued random variable.

Replacing the data-independent sup-norm covering numberNr by the (smaller) expected

covering numbers EN (Zn
1 , r,H), one may define an alternative balanced covering radius of

H as follows:

r̄n = inf




r : r ≥
√

8 log EN (Zn
1 , r/2,H)

n




 ∨
√

8

n
.

Here a ∨ b = max(a, b). Given data Tn, let f ′n denote a function in F having minimal

empirical risk. Then Lemma 2 in Section 6 shows that

EL(f ′n) − inf
f∈F

L(f) ≤ 2E

[

sup
f∈F

|L̂n(f) − L(f)|
]

≤ 8r̄n,

Note that r̄n depends critically on the (unknown) distribution of Z = (X,Y ). For certain

“nice” distributions, r̄n may be significantly smaller than the minimax risk associated with

the class F . In other words, the actual complexity of the estimation problem may be much

less than the worst-case complexity, as measured by the minimax risk. This implies that

adaptive model selection methods which assign a penalty to a model class based on its

minimax risk will necessarily perform suboptimally for all such nice distributions. The pur-

pose of this paper is to present a method that assesses the actual (distribution-dependent)

balanced covering radius of each model class empirically, and then uses these radii to calcu-

late data-based complexity penalties for adaptive model selection. Our estimates are based

on empirical coverings of the model classes. A closely related approach to exploiting nice

distributions is elaborated by Shawe-Taylor et al. (1997).

1.2 Adaptive model selection

Empirical risk minimization over a model class F provides an estimate whose loss is close

to the optimal loss L∗ if the class F is (i) sufficiently large so that the loss of the best

function in F is close to L∗ and (ii) is sufficiently small so that finding the best candidate

in F based on the data is still possible. This trade-off between approximation error and

estimation error is best understood by writing

EL(fn) − L∗ =

(
EL(fn) − inf

f∈F
L(f)

)
+

(
inf
f∈F

L(f) − L∗
)
.

Often F is large enough to minimize L(·) for all possible distributions of (X,Y ), so that

F is too large for empirical risk minimization. In this case it is common to fix in advance

a sequence of smaller model classes F1,F2, . . . whose union is equal to F . Given data Tn,

one wishes to select a good model from one of these classes. Denote by f
(k)
n a function in
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Fk having minimal empirical risk. If the distribution of (X,Y ) were known in advance, one

would select a model class FK such that

EL(f (K)
n ) − L∗ = min

k
EL(f (k)

n ) − L∗

= min
k

[(
EL(f (k)

n ) − inf
f∈Fk

L(f)

)
+

(
inf

f∈Fk

L(f) − L∗
)]

.

In the previous section it was shown that for each model class Fk, a quite acceptable upper

bound for the estimation error is given by

EL(f (k)
n ) − inf

f∈Fk

L(f) ≤ 8r̄(k)
n .

Here r̄
(k)
n denotes the balanced covering radius of the class Hk = {ℓ(f(x), y) : f ∈ Fk} with

respect to Zn
1 , and is defined by

r̄(k)
n = inf




r : r ≥
√

8 log EN (Zn
1 , r/2,Hk)

n




 ∨
√

8

n
.

With this in mind, a slightly less ambitious goal of the model selection problem is to find

an estimate gn such that

EL(gn) − L∗ ≈ min
k

[
8r̄(k)

n +

(
inf

f∈Fk

L(f) − L∗
)]

. (2)

An estimate satisfying (2) achieves an optimal trade-off (over classes Fk) between approx-

imation error and a tight distribution-dependent upper bound on estimation error. The

main difficulty in constructing such an estimate is that both r̄
(k)
n and the approximation

error depend on the unknown distribution of (X,Y ), and the optimal k is a complicated

function of this distribution. The main result of the paper is the construction of an estimate

which achieves this goal. The exact performance bound is given in Theorem 1 below.

Previous approaches to the model selection/prediction problem described above include

Grenander’s (1981) method of sieves, in which the classes Fi are nested, finite subsets of a

fixed universal collection F . Here, typically, the model class is selected in advance of the

data, based only on the sample size n, in such a way that the model class gets richer as

n increases, but that this increase of complexity is sufficiently slow so that the estimation

error may be controlled.

Distribution-free consistency and rates of convergence for sieve-type estimates have been

investigated, e.g., by Geman and Hwang (1982), Gallant (1987), Shen and Wong (1994),

Wong and Shen (1992), Devroye (1988), White (1990), Lugosi and Zeger (1995), and Birgé

and Massart (1998).

Complexity regularization, also known as structural risk minimization, extends the

methodology of sieve estimates by using the data to choose the class from which the estimate

is selected. Complexity regularization seeks to counter optimistic estimates of empirical risk

by means of complexity penalties that favor simpler prediction rules, or rules belonging to
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smaller classes. In other words, the training set Tn is used to adaptively select both a

model class Fk and a suitable prediction rule from that class. The potential advantages of

such flexibility are clear. If a function minimizing L(·) lies in Fk, then there is no point in

searching for a rule in a larger class, which has a greater estimation error. On the other

hand, when no rule f in a non-adaptively chosen class Fk minimizes L(·), the data may

warrant consideration of a larger model class Fk′ having better approximation capabilities.

Early applications of complexity penalties to the problem of model selection were proposed

by Mallows (1973), Akaike (1974), Vapnik and Chervonenkis (1974), and Schwarz (1978).

In the work of Rissanen (1983), Barron (1985), Wallace and Freeman (1987), and Barron

and Cover (1991), the complexity penalty assigned to a model class is the length of a binary

string describing the class. In this model, minimization of empirical risk plus complexity

takes the form of a minimum description length principle. In this paper, as in the earlier

work of Vapnik (1982), Barron (1991), Lugosi and Zeger (1996), and the recent work of

Barron, Birgé, and Massart (1999), the complexity assigned to a model class does not have

the formal interpretation of a description length, but is instead an upper bound on the

estimation error of the class. For different applications and extensions of the same ideas we

refer to Kearns et al. (1995), Krzyżak and Linder (1998), Meir (1997), Modha and Masry

(1996), Shawe-Taylor et al. (1997), and Yang and Barron (1998).

Both the design and the analysis of penalized model fitting procedures rely on bounds for

the complexity of the given model classes. As was mentioned above, worst-case assessments

of model complexity are vulnerable to the fact that the complexity of a given model class

can vary greatly with the underlying distribution of the pair (X,Y ). For example, if the

random vector X takes values in a finite set {x1, . . . , xk} ⊆ Rd, then any model class F can

be viewed as a subset {(f(x1), . . . , f(xk)) : f ∈ F} of the finite dimensional space Rk, where

the dimension k is independent of the sample size n. Under these circumstances worst-case

bounds on the complexity of F will be extremely pessimistic.

As the distribution of (X,Y ) is unknown, any procedure that seeks to assess model

complexity in a distribution-specific fashion must do so based on the data. In this paper we

propose and analyze an adaptive model fitting procedure, which is based on data-dependent

complexity penalties.

The available data are divided into two parts. The first is used to form an empirical

cover of each model class, and the second is used to select a candidate rule from each cover

having minimal empirical risk. The covering radii are determined empirically in order to

optimize an upper bound on the estimation error. The empirical complexity of each model

class is related to the cardinality of its empirical cover. An estimate gn is chosen from

among the countable list of candidates in order to minimize the sum of class complexity

and empirical risk.

Estimates of this sort, based on empirical covering of model classes, were first proposed

by Buescher and Kumar (1996a,b), who showed that empirical covering provides consistent

learning rules whenever such rules exist.
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Below inequalities and rates of convergence for the estimate gn are established, and appli-

cation of the estimates to a variety of problems, including nonparametric classification and

regression, is considered. The proposed estimates achieve a favorable tradeoff between ap-

proximation and estimation error, and they perform as well as if the distribution-dependent

complexities of the model classes were known beforehand.

1.3 Summary

Our principal assumptions, and several technical preliminaries are discussed in the next

section. In Section 3 the complexity penalized estimator gn is defined. A general upper

bound on the performance of the estimator is given in Theorem 1, after which the relation

of the bound to existing results is discussed.

In Section 4, some special cases, including regression function estimation under the L2

loss, are considered. In these cases, by modifying the complexities assigned to each class,

faster rates of convergence are achievable. An upper bound on the performance of the

modified estimate is presented in Theorem 2.

Sections 5.1 to 5.5 contain applications of Theorem 1 to curve fitting and classification.

In Section 5.6, the complexity-based estimate is employed as a means of fitting piecewise

polynomial regression trees to multivariate data. The proofs of Theorems 1 and 2 appear

in Section 6.

2 The AMSEC Estimate

2.1 Preliminaries and Assumptions

In what follows, a model class is any family F of prediction rules f : Rd → R. It is assumed

that a sequence of model classes

F1, F2, F3, . . . (3)

and a non-negative loss function l : R×R → [0,∞) have been fixed in advance. The model

classes (3) need not be nested. For each model class Fk let

Hk = {h(x, y) = ℓ(f(x), y) : f ∈ Fk} (4)

be the associated family of error functions. By definition, each error function is non-negative.

Each model class Fk is assumed to contain a countable subclass F0
k with the property that

every f ∈ Fk is a pointwise limit of a sequence of functions from F0
k . Each family Hk of

error functions is assumed to have the same property. This ensures the measurability of

random variables that are defined in terms of suprema or infima over the various classes

(see Dudley (1978) for more details).

The data consist of n i.i.d. replicates of a jointly distributed pair Z = (X,Y ) ∈ Rd ×R.

Our principal assumption is that l(y, y′) ≤ 1 for each y, y′ ∈ R, or more generally, that

h(Z) ≤ 1 with probability one for each error function h ∈ ∪∞
k=1Hk . (5)
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By suitably rescaling ℓ(·, ·), one may ensure that the latter condition holds whenever there

is a constant B < ∞ such that h(Z) ≤ B with probability one for every error function h.

In other circumstances, it may be necessary to truncate ℓ(·, ·), or to assume (e.g. in the case

of absolute or squared loss) that the response variable Y is bounded.

If a uniform upper boundB on the error functions exists, but is unknown, one may define

a modified estimator that employs a data-dependent rescaling of the loss function. Upper

bounds on the performance of the modified estimator will be asymptotic in nature, and will

involve distribution dependent constants involving the distribution of h(Z). The condition

of uniform boundedness may be replaced by conditions requiring rapidly decreasing tails of

h(Z), but for the sake of simplicity such cases are not discussed here.

Beyond boundedness of the error functions, no restrictions are placed on the joint dis-

tribution of (X,Y ). In particular, the distribution of X is not assumed to be absolutely

continuous, nor is it assumed that the conditional distribution of Y given X is of some

parametric form. No regularity or smoothness conditions are placed on the loss function

ℓ(·, ·).

3 Description of the estimate

The estimate is defined by first splitting the available data in half. The first half of the

data is used to (i) select a suitable covering radius for each model class, and (ii) construct

a suitable empirical cover of each model class using the selected radius. Each model class

is assigned an empirical complexity that depends on the size of its empirical cover. The

second half of the data is used to assess the empirical risk of a given classification rule.

From the empirical cover of each class a candidate rule is selected having minimal empirical

risk. The estimate is defined to be a candidate rule for which the sum of empirical risk and

class complexity is minimized. A formal description of the estimate follows. Let F1,F2, . . .

be a fixed sequence of model classes.

Data Splitting. Ignoring the last sample point if necessary, assume without loss of gener-

ality that the size n of the available data is even. Split the data sequence into two parts of

equal size,

Z1, . . . , Zm and Zm+1, . . . , Zn .

where (n−m) = m = n/2, and Zi denotes the pair (Xi, Yi).

Step 1: For each k ≥ 1 consider the family Hk of error functions (4) associated with Fk.

Using the first half of the data, evaluate the balanced empirical covering radius of Hk as

follows:

r̂(k)
m = inf




r : r ≥
√

8 logN (Zm
1 , r/2,Hk)

m




 ∨
√

8

m
. (6)
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Here a ∨ b = max(a, b). Let Ĥk be an empirical cover of Hk on Z1, . . . , Zm with radius r̂
(k)
m

and minimal cardinality:

|Ĥk| = N(Zm
1 , r̂

(k)
m ,Hk) .

(Covering numbers and empirical covers are defined in Section 1.1 above.) Let F̂k be a

corresponding finite subset of Fk such that Ĥk = {ℓ(f(x), y) : f ∈ F̂k} and |F̂k| = |Ĥk|.
Assign to the model class Fk the empirical complexity

Ĉn−m(k) =

√√√√ log |F̂k| + 2 log k

2(n−m)
=

√
logN(Z

n/2
1 , r̂

(k)
m ,Hk) + 2 log k

n

Note that F̂k may be regarded as an empirical cover of Fk with respect to a metric that is

determined by the loss function ℓ(·, ·).

Step 2: Define the empirical risk of a prediction rule f : Rd → R to be the average loss of

f on the second half of the data:

L̂n−m(f) =
1

n−m

n∑

i=m+1

ℓ(f(Xi), Yi) . (7)

For each j ≥ 1 let f̂j be a member of F̂j having minimal empirical risk,

f̂j = arg min
f∈F̂j

L̂n−m(f) . (8)

Note that f̂j depends on Z1, . . . , Zm through the choice of F̂j , and on Zm+1, . . . , Zn through

the definition of L̂n−m(·).

Step 3: From each model class Fj there is a candidate rule f̂j that is chosen based on

the available data. The estimate is chosen from the list of candidates f̂1, f̂2, . . . in order to

minimize the sum of empirical risk and empirical class complexity. Define gn = f̂k where

k = arg min
j≥1

[
L̂n−m(f̂j) + Ĉn−m(j)

]
. (9)

Thus gn is defined by means of adaptive model selection, using empirical complexities. It

will be referred to as the AMSEC estimator in what follows. Observe that Ĉn−m(j) → ∞
as j → ∞. Since the empirical risks L̂n−m(f̂j) are bounded above by 1, a minimizing index

k must exist, and therefore gn is well-defined.

Remark: We note that the estimate defined above will not, in general, be computationally

feasible. This limitation arises principally from the difficulty of evaluating empirical covering

numbers, and of selecting a minimal covering of a given radius.

The chosen prediction rule gn comes from the union of the empirical covers F̂ =
⋃∞

j=1 F̂j .

The underlying model classes Fj may overlap (if they are nested, for example), and therefore
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the covers F̂j may not be disjoint. With this in mind one may define the complexity of each

individual rule f ∈ F̂ by

∆̂n−m(f) = min
{
Ĉn−m(j) : all j such that f ∈ F̂j

}
.

Let g′n be any function in F̂ achieving an optimum trade-off between performance and

complexity:

g′n = arg min
f∈F̂

[
L̂n−m(f) + ∆̂n−m(f)

]
. (10)

It is easy to show that any function achieving this minimum can be obtained via a two-stage

optimization procedure similar to that described in steps 2 and 3 above. Thus the analysis

of gn applies to g′n as well.

3.1 Performance of the estimate

Our initial bounds on the expected loss of the estimate gn are given in terms of balanced

covering radii for the families of error functions Hk. The balanced covering radius of Hk

with respect to Z1, . . . , Zm is defined by

r̄(k)
m = inf




r : r ≥
√

8 log EN (Zm
1 , r/2,Hk)

m




 ∨
√

8

m
. (11)

Recall that the optimal performance obtainable with any prediction rule is given by

L∗ = inf
f
L(f),

where the infimum ranges over all measurable functions f : Rd → R. Define also

L∗
k = inf

f∈Fk

L(f)

to be the optimal performance of rules in the k’th model class. The following theorem gives

expected performance bounds for the estimator gn defined above.

Theorem 1 Under the boundedness assumption (5), for each n the AMSEC estimate gn is

such that

EL(gn) − L∗ ≤ inf
k≥1



13.66r̄
(k)
n/2 + 5.2

√
log k

n
+ (L∗

k − L∗)



 .

Remark 1. The bound of Theorem 1 comes quite close to the goal set forth in (2). In

addition to a larger constant (13.66 instead of 8), the balanced covering radii are now

calculated at sample size n/2. The additional term 5.2
√

log k/n is typically much smaller

than the first term. The bounds in Theorem 1 and the corollaries that follow are non-

asymptotic. They hold for every fixed sample size n. Thus, in principle, the sequence of

model classes may change with sample size, that is each Fj may be replaced by Fj,n.
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Remark 2. To evaluate the performance bound in specific examples, one needs upper

bounds for r̄
(k)
n/2. Since

r̄
(k)
n/2 ≤ inf

r
max




 r, 2

√
log EN (Zm

1 , r/2,Hk)

n
,

4√
n




 ,

we see by taking r = 4/
√
n for example, that

r̄
(k)
n/2 ≤ 2

√
log EN

(
Zm

1 , 2n
−1/2,Hk

)

n
∨ 4√

n
.

This inequality will be used in some of the applications below.

Remark 3. (Lipschitz loss.) A loss function ℓ(·, ·) is called Lipschitz if there is a constant

M < ∞ and a set C ⊂ R, containing the range of every function in ∪∞
k=1Fk, such that for

every y1, y2 ∈ C and every v ∈ R,

|ℓ(y1, v) − ℓ(y2, v)| ≤M |y1 − y2| .

Note that the absolute loss ℓ(u, v) = |u− v| is Lipschitz, and that if ℓ is Lipschitz then for

each pair f, f ′ ∈ Fk,

|L(f) − L(f ′)| ≤ME|f(X) − f ′(X)| .

If ℓ(·, ·) is Lipschitz, a straightforward argument shows that for every k ≥ 1 and r > 0,

N
(
Z

n/2
1 , r,Hk

)
≤ N

(
X

n/2
1 ,Mr,Fk

)
.

This inequality will be used in some of the applications below.

Remark: For technical reasons, it is necessary to require that both r̂
(k)
m and r̄

(k)
m be at

least
√

8/m. In all interesting situations N(Z
n/2
1 , r/2,Hk) ≥ 3, and the maximum in the

definition of the covering radii is achieved by the first term.

3.2 Discussion

Theorem 1 is similar in spirit to results of Barron and Cover (1991) and Barron (1991).

In their work, there is for each sample size n, a fixed, countable list of candidate rules,

each of which is assigned a data-independent complexity. They show that for each n the

error of their estimate is bounded by a constant times an index of resolvability, which

is the minimum, over all candidates, of the sum of approximation error and complexity.

In a similar fashion, the bound of Theorem 1 measures the best possible tradeoff between

complexity and approximation ability, and it too may be viewed as an index of resolvability.

The crucial improvement here is the appearance of the distribution-dependent quantity r̄
(k)
n/2

in Theorem 1 above.

In applications where the model classes F1,F2, . . . contain infinitely many functions,

Barron and Cover (1991) and Barron (1991) assume that, for every fixed positive resolution,
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each class can be covered in supremum norm by finitely many functions. For each n, their

countable list of candidates is the union of the finite ǫn-covers of each class. While covering

in the supremum norm ensures that the list will have good approximation properties under

every distribution, for Lipschitz loss functions the appropriate measure of approximation

is the metric of L1(PX). Sup-norm covering numbers overestimate L1 covering numbers,

sometimes substantially, and thereby increase the index of resolvability.

In light of its equivalent definition g′n above (10), it can be seen that our estimate

selects, for each n, a countable list of candidate functions from F1,F2, . . . in a data-adaptive

way. The list contains functions that have good approximation properties in the norm

corresponding to the empirical distribution of X1, . . . ,Xn. As a result, our upper bound is

expressed in terms the expected L1 covering numbers, rather than the sup-norm covering

numbers.

In recent work, Barron, Birgé and Massart (1999) give an exhaustive review and a wide

variety of sharp bounds for estimation procedures based on data-independent complexities.

When each of the model classes Fk is both linear and finite-dimensional, their bounds

improve those obtained below, and they obtain rates that differ from ours by a logarithmic

factor. In earlier work on linear finite-dimensional model classes, Birgé and Massart (1997)

defined a data-dependent complexity penalty different from the one considered here. In

their penalty the observations are used to scale a data-independent term that involves the

dimension of the model and the sample size. In both papers the complexity penalties

derive from distribution-free upper bounds on the estimation error, which are based on the

assumption that the individual model classes are finite-dimensional. Our method does not

require the availability of such distribution-free bounds, or that each model class be finite

dimensional. Indeed, the strength of our method is seen when neither of these conditions

holds. Several examples are given in the next two sections.

4 The second estimate

As it was pointed out by Barron (1991), there are special cases, such as regression estimation

with squared error loss, in which it may be advantageous to significantly decrease the size

of the complexity penalties in order to achieve faster rates of convergence. In this spirit, a

modification of the AMSEC estimate is proposed and analyzed below.

For k ≥ 1 let Fk be a model class consisting of functions f : Rd → R, and let Hk =

{h(x, y) = ℓ(f(x), y) : f ∈ Fk} be the corresponding class of error functions. Let rk > 0

be a data-independent covering radius for Hk. Given data Z1, . . . , Zn, with n assumed to

be even, set m = n/2 and let Ĥk be an empirical cover of Hk on Z1, . . . , Zm with radius

rk and cardinality N(Zm
1 , rk,Hk). (Covering numbers and empirical covers are defined in

Section 1.1 above.) Let F̂k be any subset of Fk such that Ĥk = {ℓ(f(x), y) : f ∈ F̂k} and

13



such that |F̂k| = |Ĥk|. Assign to the Fk the complexity

Ĉn−m(k) = 22 · log |F̂k| + 2 log k

n−m
.

Select from each family F̂j a candidate rule f̂j as in (8) that has minimal average risk on

the last n/2 observations. Let k be the least integer j minimizing L̂n−m(f̂j) + Ĉn−m(j),

where the empirical risk L̂n−m is defined in (7). Define a rule ψn = f̂k. Thus ψn is defined

by selecting from among the candidates f̂j a rule minimizing the sum of empirical risk and

class complexity. Recall that L∗
k = inff∈Fk

L(f) is the optimal expected performance of

rules in the k’th model class.

Theorem 2 Under the boundedness assumption above, the modified AMSEC estimate sat-

isfies

EL(ψn) ≤ c0 inf
k≥1

[

rk + c1
log EN(Z

n/2
1 , rk/14,Hk)

n
+
c2 log k

n
+ L∗

k

]

+
c3
n
,

where c0, c1, c2, c3 > 1 are universal constants.

Remark 4. The principal improvement of Theorem 2 over Theorem 1 is that the complexity

penalty

r̄
(k)
n/2 ≈ inf

r



r + 2

√√√√ log EN
(
Z

n/2
1 , r/2,Hk

)

n





has now been replaced by rk + c1n
−1 log EN(Z

n/2
1 , rk/14,Hk), which is often much smaller.

However, a price is paid for this improvement. Since the constant c0 is strictly greater

than one, subtracting L∗ from both sides of the performance bound shows that Theorem 2

provides an asymptotic improvement over Theorem 1 only if L∗ = 0. If L∗ > 0 then infk L
∗
k

is necessarily positive, and the bound of Theorem 2 does not even guarantee consistency:

it may happen that EL(ψn) does not converge to L∗. Nevertheless, the case L∗ = 0 is

interesting, and as shown below, Theorem 2 applies to the general situation in the case of

squared error loss.

Remark 5. We have not attempted to find the optimal constants for Theorem 2. The

values found in the proof below are c0 = 10, c1 = 401, c2 = 18, and c3 = 10442. These may

be improved by a more careful analysis.

Remark 6. In the modified AMSEC estimate the covering radii rk are fixed in advance of

the data. As a consequence, the optimal balanced covering radii do not appear in Theorem

2. In certain cases satisfactory approximations can be found by investigating the model

classes. For finite-dimensional model classes rk ≈ n−1 is generally a good choice.
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4.1 Regression function estimation

Consider the squared loss function ℓ(y′, y) = (y′ − y)2. In this case it is well known that for

any bounded function f : Rd → R,

L(f) = E
{
(f(X) − Y )2

}
= E

{
(f(X) − f∗(X))2

}
+ E

{
(f∗(X) − Y )2

}
,

where f∗(x) = E{Y |X = x} is the regression function of Y on X. Note that if Y and each

candidate decision rule take values in the unit interval, then the boundedness assumption

above is satisfied.

To study regression estimation in the context of Theorem 2 we introduce modified

expected and empirical losses

J(f) = L(f) − L(f∗) and Ĵn(f) = L̂n(f) − L̂n(f∗).

If the regression function f∗ is unknown, the empirical modified loss Ĵn(f) cannot be cal-

culated directly. However the AMSEC estimate ψn computed with the modified loss is the

same as that computed using the unmodified squared loss as the term L̂n(f∗) is the same

for each candidate rule. It follows from Theorem 2 that

EJ(ψn) ≤ c0 inf
k≥1

(

rk + c1
log EN(Z

n/2
1 , rk/14,Hk)

n
+
c2 log k

n
+ J∗

k

)

+
c3
n
,

where J∗
k = inff∈Fk

J(f). This readily implies the following performance bound for the

AMSEC regression estimate: if (f(X) − Y )2 ≤ 1 for each candidate prediction rule then

EL(ψn)−L(f∗) ≤ c0 inf
k≥1

(

rk + c1
log EN(Z

n/2
1 , rk/14,Hk)

n
+
c2 log k

n
+ (L∗

k − L(f∗))

)

+
c3
n
.

Thus, in the special case of regression function estimation with the squared loss, one may

obtain improved rates of convergence even when L∗ = L(f∗) 6= 0.

5 Applications

5.1 Finite dimensional classes

In many applications the model classes Fk are “finite dimensional,” meaning that there

exist numbers Vk, wk such that for every sequence z1, . . . , zm ∈ Rd × R and every r > 0,

one has N(zm
1 , r,Hk) ≤ (wk/r)

Vk . The number Vk may be called the “dimension” of the

model class Fk. In this case the performance bound of Theorem 1 together with Remark 2

imply that

EL(gn) − L∗ ≤ min
k≥1




C

√
Vk(log n+ logwk) + ck

n
+ (L∗

k − L∗)




 . (12)
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For example, if Fk is a VC-graph class, then it is finite-dimensional in the above sense (see,

e.g., Chapter 2. of Pollard (1984)).

When the numbers V1, w1, V2, w2, . . . are known in advance of the data, existing complexity-

based methods offer similar, and in some specific cases (see Barron, Birgé, and Massart

(1999)) better, performance bounds than those in (12) above. One advantage of the adap-

tive approach taken here is that it may be applied without the knowledge that the model

classes are finite-dimensional, and without knowledge of the quantities wk, Vk. More im-

portantly, however, if for some distribution EN(Zm
1 , r,Hk) ≤ (w′

k/r)
V ′

k with w′
k << wk and

V ′
k << Vk, then we may replace wk and Vk respectively by these smaller values in (12).

One might call V ′
k the “effective dimension” of Fk with respect to the actual distribution

of Z = (X,Y ). As V ′
k is often significantly smaller than Vk, the new method will, in such

cases, be superior to methods in which complexity penalties are based on distribution-free

quantities. The new method is also able to handle “infinite-dimensional” model classes.

One such example is sketched in the following section.

5.2 Piecewise monotone functions

Consider a one-dimensional curve fitting problem in which the k-th model class Fk contains

all those functions f : R → [−1/3, 1/3] comprised of k monotone pieces, that is, there exist

numbers u1 ≤ · · · ≤ uk−1 such that on each of the intervals (−∞, u1], (u1, u2], . . . , (uk−1,∞),

f is either decreasing or increasing. It can be shown that none of the Fk is finite dimensional

in the sense described above. Assume that the response variable is Y = f∗(X) +W , where

f∗ is an unknown function in ∪∞
k=1Fk, and the random variable W is independent of X and

such that P{|W | ≤ 1/3} = 1, and the median of W equals zero. Let ℓ(·, ·) be the absolute-

error loss ℓ(y1, y2) = |y1 − y2|. Thus the uniform boundedness assumption is satisfied.

Moreover L∗ = E|W | and inff∈Fk
L(f) = L∗ if k is so large that f∗ ∈ Fk. Under these

assumptions the AMSEC estimator gn satisfies the following inequality:

Proposition 1 Let K be the least index k such that f∗ ∈ Fk. Then

EL(gn) − L∗ ≤ c




√
K log n

n
+ n−1/3

√
K log n



 ,

where c is a universal constant.

The risk of gn converges to zero at rate n−1/3
√

log n. Nemirovksii, Polyak, and Tsybakov

(1985) showed that the minimax optimal rate of convergence for the class F1 is n−1/3. Thus,

the performance of the estimate gn is at most a factor of
√

log n away from the optimal rate

for all Fk.

Proof: As the absolute-error loss is Lipschitz, for every sequence z1 = (x1, y1), . . . , zm =

(xm, ym), every r > 0, and every k ≥ 1 one has N(zm
1 , r,Hk) ≤ N(xm

1 , r,Fk) (see Remark
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3 above). To calculate an upper bound for N(xm
1 , r,Fk), it suffices to count the number of

functions restricted to xm
1 , comprised of k monotone pieces, that take at most N = ⌈1/r⌉

distinct values. Now there are at most
(m+k

k−1

)
different ways of segmenting x1, . . . , xm into

k pieces of lengths m1, . . . ,mk with
∑k

i=1 = m Since the number of monotone functions on

mi points taking N distinct values is at most
(mi+N+2

mi

)
, for each m ≥ k, and each r > 0

N(xm
1 , r,Fk) ≤

(
m+ k

k − 1

)

· max
m1+···+mk=m

k∏

i=1

(
mi +N + 2

mi

)

≤ (2m)k−1 · (m+N + 2)k(N+2),

so that

logN(xm
1 , r,Fk) ≤ (k − 1) log(2m) + k

(
1

r
+ 3

)
log

(
m+

1

r
+ 3

)
.

In conjunction with (11), the last bound shows that r = cm−1/3
√
k logm is an upper bound

for r̄
(k)
m . As m = n/2 the bound stated above follows from Theorem 1. 2

5.3 Applications to classification

In the simplest version of the classification problem the response variable Y takes values in

{0, 1}. A (binary) classification rule is any function f : Rd → {0, 1}. Under the absolute

loss ℓ(y, y′) = |y − y′|, the risk of f is equal to its probability of error

L(f) = P{f(X) 6= Y }.

The minimum probability of error L∗ is achieved by the Bayes rule f∗(x) = I{P(Y = 1|X =

x) ≥ 1/2}, where I{·} is the indicator function of the event in braces. The Bayes rule can

be found when the joint distribution of (X,Y ) is known.

In the remainder of this section, each model class F under consideration will be a family

of binary classification rules. For each sequence of vectors x1, . . . , xm ∈ Rd, the shatter

coefficient S(xm
1 ,F) of F is defined to be the cardinality of the set {(f(x1), . . . , f(xm)) :

f ∈ F} of binary m-tuples. One may readily verify that for each r > 0,

N(xm
1 , r,F) ≤ S(xm

1 ,F) . (13)

The Vapnik-Chervonenkis (or vc) dimension of F , written dim(F), is the least integer m

such that

max{S(xm
1 ,F) : x1, . . . , xm ∈ Rd} < 2m ,

and dim(F) = ∞ if no such m exists. It is well known (Vapnik and Chervonenkis, 1971)

that for each m ≥ 1 and each sequence x1, . . . , xm ∈ Rd,

S(xm
1 ,F) ≤ mdim(F) + 1 . (14)

It follows from (13) and (14) that if the vc-dimension of a model class F is finite, then its

covering numbers are bounded by a polynomial in m that is independent of r.
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Fix a sequence F1,F2, . . . of families of binary classification rules. If each family Fk

has finite vc-dimension, then Theorem 1 gives useful bounds on the performance of the

resulting estimator. Similar bounds were established by Lugosi and Zeger (1996) for an

estimator that is based on the method of structural risk minimization proposed by Vapnik

and Chervonenkis (1974). In both cases, construction of the corresponding estimator re-

quires that bounds on the dimension of each model class be known in advance of the data.

The following performance bound for the AMSEC estimate is an immediate consequence of

Theorem 1 and Remarks 2 and 3:

Corollary 1 Let gn be the AMSEC estimator for F1,F2, . . . based on independent obser-

vations (X1, Y1), . . . (Xn, Yn). If Vk = dim(Fk) for each k, then

EL(gn) − L∗ ≤ min
k≥1




55

√
Vk log n

n
+ 5.2

√
log k

n
+

(
inf

f∈Fk

L(f) − L∗
)

 ,

and the upper bound is non-trivial if some Vk is finite.

Comparison of this result with Theorem 1 of Lugosi and Zeger (1996) shows that the

AMSEC estimate, which is based solely on empirical complexities, works as well as the

method of structural risk minimization, in which complexity penalties are assigned according

to the (known) dimension of each class. More importantly, the arguments above give also

an analogous bound with Vk log n replaced by log ES(Xm
1 ,Fk). In some cases ES(Xm

1 ,F)

is significantly smaller than the maximum of S(xm
1 ,F) over all m-length vector sequences.

Estimates based on data-dependent complexities can perform well even if each model class

Fk has infinite vc-dimension.

5.4 Unions of convex sets

In this section we stay in the framework of classification discussed above, but now we con-

sider certain model classes with infinite vc-dimension, for which the results of the previous

section cannot be applied. For k = 1, 2, . . . let Fk contain the indicator function of each

set C ⊆ Rd that is equal to the union of at most k convex sets. The vc-dimension of

each class Fk is infinite. However, if the distribution of X has a density with respect to

Lebesgue measure then there exist constants {bm}, depending on the density of X, such

that bm/m → 0 and ES(Xm
1 ,F1) ≤ 2bm for each m ≥ 1, see Devroye, Györfi and Lugosi,

1996, Section 13.4. An inspection of their proof shows, in addition, that for each k ≥ 1,

E
{
S(Xm

1 ,F1)
k
}
≤ 2kbm . (15)

Elementary combinatorial arguments like those in Chapter 2 of Pollard (1984) show that

for each k and each sequence x1, . . . , xm ∈ Rd, S(xm
1 ,Fk) ≤ S(xm

1 ,F1)
k. Therefore,

log EN(Xm
1 ,m

−1/2,Fk) ≤ log ES(Xm
1 ,Fk) ≤ kbm = ko(m).
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Moreover, for each distribution of (X,Y ), inff∈Fk
L(f) → L∗ as k → ∞ since any subset

of Rd can be approximated in the symmetric difference metric by a finite union of convex

sets. Combining the last two observations with Theorem 1, one may establish the following

result:

Proposition 2 If the distribution of X is absolutely continuous, the AMSEC estimates gn

for F1,F2, . . . are Bayes risk consistent, that is, EL(gn) → L∗ as the sample size n→ ∞.

Remark: There is at least one special case in which it is possible to obtain rates of

convergence for the estimates of Proposition 2. Suppose that d = 2 and that X has a

bounded density with bounded support. Then it is known (c.f. Devroye, Györfi, and Lugosi,

1996, Section 13.4) that bm ≤ c
√
m, where c > 0 depends only on the distribution of X.

Under these additional assumptions Theorem 1 shows that

EL(gn) − L∗ ≤ inf
k

(
c′k1/2n−1/4 + (L∗

k − L∗)
)

for some universal constant c′. In computational learning theory it is common to assume

that L∗ = 0 and moreover that f∗ ∈ ∪∞
k=1Fk. In such cases, choosing rk = 14/n, Theorem

2 may be applied to show that the modified estimate ψn achieves

EL(ψn) ≤ c′′
K√
n
,

where K is the smallest index k such that f∗ ∈ Fk and c′′ is another universal constant.

5.5 Discrete distributions

If the common distribution of the predictors X1,X2, . . . is discrete then, under mild condi-

tions, simple classification schemes such as empirical minimization are consistent regardless

of the model class F from which prediction rules are selected. Under the same circum-

stances, the more adaptive procedure considered here exhibit similar behavior. It is shown

below that the effective dimension of a model class F with respect to a sequence X1, . . . ,Xm

is bounded by the number of distinct elements in that sequence. The proposed estimation

method exploits this reduction of complexity adaptively, without prior knowledge of X or

the model classes Fk. Application of Theorem 1 requires a preliminary result.

Proposition 3 Let W1,W2, . . . ,W be i.i.d. integer-valued random variables, with probabil-

ities pk = P{W = k} for k ≥ 1. Let Mn be the number of distinct integers appearing in the

sequence W1, . . . ,Wn. Then

lim
n→∞

n−1 log E2Mn = 0. (16)

If EW1 =
∑∞

k=1 kpk <∞ then

lim
n→∞

n−1/2 log E2Mn = 0. (17)
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Proof: Note that for every integer k ≥ 1,

Mn ≤ k +
n∑

i=1

I{Wi > k} .

From this last inequality and the independence of W1, . . . ,Wn it follows that

E2Mn ≤ 2k ·
(
E2I{W>k}

)n

= 2k · (1 + 2P{W > k})n

≤ exp [ k + 2nP{W > k} ] . (18)

Therefore,

n−1 log E2Mn ≤ k

n
+ 2P{W > k}

and letting n tend to infinity,

lim sup
n→∞

1

n
log E2Mn ≤ 2P{W > k}.

Suitable choice of k insures that the right-hand side of the last inequality is arbitrarily close

to zero, and (16) follows.

To establish (17), note that if
∑∞

k=1 kpk < ∞ then limk→∞ k · P{W > k/j} = 0 for

every fixed positive integer j. Set N0 = 1 and for each j ≥ 1 let Nj be the least integer

N > Nj−1 such that for every n ≥ N ,

n1/2 P

{

W >
n1/2

j

}

≤ 1

j
.

Therefore

kn =
n1/2

max{j : Nj ≤ n} .

is such that kn = o(n1/2) and n1/2 P{W > kn} = o(1). It follows from (18) with k = kn

that

n−1/2 log E2Mn ≤ kn

n1/2
+ 2n1/2 P{W > kn} = o(1).

2

Proposition 4 Let gn be the n-sample AMSEC estimator for an arbitrary sequence F1,F2, . . .

of families of binary-valued prediction rules. If the distribution of X is supported on a count-

able set S ⊆ Rd then the following implications hold.

1. If the Bayes rule f∗ is in the L1 closure of
⋃

k Fk then EL(gn) → L∗.

2. If the elements of S may be ordered as x1, x2, . . . in such a way that
∑∞

k=1 kP (xk) is

finite, and if f∗ ∈ ⋃k Fk, then EL(gn) ≤ L∗ +O(n−1/4).
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Proof: Define Wi =
∑∞

j=1 jI{Xi = xj} and fix k ≥ 1. The shatter coefficient of Fk on Xm
1

is at most #{(f(X1), . . . , f(Xm)) : f ∈ F} ≤ 2Mm , where Mm is the number of distinct

integers among W1, . . . ,Wm. Thus, for every r > 0,

EN(Xm
1 , r,Fk) ≤ ES(Xm

1 ,Fk) ≤ E2Mm ,

and it follows from (16) that n−1 log EN(X
n/2
1 , n−1/2,Fk) → 0. In conjunction with Theo-

rem 1 and Remark 3, this last relation implies

lim sup
n→∞

EL(gn) − L∗ ≤ L∗
k − L∗ ≤ inf

f∈Fk

E|f − f∗| .

Letting k tend to infinity establishes the first conclusion of the proposition. To establish

the second, let K be any index such that f∗ ∈ FK . By the bound on the expected covering

numbers above,

EL(gn) − L∗ ≤ c ·




√
log ES(X

n/2
1 ,FK)

n
+

√
logK

n





for every n ≥ 1. Equation (17) implies that the first term in brackets is O(n−1/4). 2

Remark: Note that no conditions have been placed on the model classes Fk, which can be

arbitrarily complex.

5.6 Piecewise polynomial regression trees

Here the modified estimate of the previous section is used to fit piecewise polynomial re-

gression trees to multivariate data, when the unknown regression function f∗ is smooth, in

the sense that it possesses continuous partial derivatives of some unknown order.

Piecewise polynomial regression trees are most naturally described by doubly indexed

model classes. The class Fk,p contains functions f : Rd → R that are obtained by (i)

forming a hierarchical (tree-structured) partition of Rd with k cells and then (ii) assigning

a truncated multivariate polynomial of degree p to each cell. In selecting a suitable model,

the procedure must choose both the number of cells k and the degree of local approximation

p. Increasing p enables the procedure to more accurately reproduce the empirical behavior

of the data within each cell, while increasing k allows for smaller cells. Balancing these

choices against the estimation error of the resulting models, the complexity penalized re-

gression procedure adapts to the unknown regularity of the regression function. Its success

is reflected in its rate of convergence, which is within a logarithmic factor of optimal.

A tree-structured partition is described by a pair (T, τ), where T is a finite binary tree,

and τ is a function that assigns a test vector τ(t) ∈ Rd to every node t ∈ T . Every vector

x ∈ Rd is associated, through a sequence of binary comparisons, with a descending path in

T . Beginning at the root, and at each subsequent internal node of T , x moves to that child
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of the current node whose test vector is nearest to x in Euclidean distance. In case of ties,

x moves to the left child of the current node. The path ends at a terminal node (leaf) of T .

For each node t ∈ T , let Ut be the set of vectors x whose path includes t. If t is the root

node of T then Ut = Rd. In general, the region Ut corresponding to an internal node of T

is split between the children of that node by the hyperplane that forms the perpendicular

bisector of their test vectors. Thus if t is at distance k from the root, then Ut is a polytope

having at most k faces. The pair (T, τ) generates a partition π of Rd, whose cells are the

regions Ut associated with the terminal nodes of T . Let Tk contain all those partitions

generated by binary trees T having k terminal nodes.

If at each internal node of T the comparison between the test vectors labeling its children

involves a single coordinate of x, then each cell of the resulting partition is a d-dimensional

rectangle. Partitions of this sort, based on axis-parallel splits, are the basis for the regression

trees considered by Breiman, Friedman, Olshen, and Stone (1984).

For each vector u = (u1, . . . , ud) ∈ Rd and each sequence α = (α1, . . . , αd) of non-

negative integers, let uα = uα1

1 · · · uαd

d and |α| = α1 + · · · + αd. For each p ≥ 0 let

Gp =




g(x) =
∑

|α|≤p

aαx
α : aα ∈ R






be the class of multivariate polynomials on Rd of order p. Assuming that the response

variable Y ∈ [−1/2, 1/2], define the class of truncated polynomials

G̃p = {(g(·) ∧ 1/2) ∨ (−1/2) : g ∈ G} .

A k-node piecewise polynomial regression tree with local order p is a function f : Rd →
R of the form

f(x) =
∑

U∈π

gU (x)IU (x)

where π ∈ Tk, and gU ∈ G̃p for each U ∈ π. In other words, f is obtained by applying

a different truncated multivariate polynomial in G̃p within each cell of a partition in Tk.

For each pair k, p ≥ 0 let Fk,p contain all the k-node piecewise polynomial regression trees

with local degree p. Let gn be the complexity penalized regression estimate defined using

{Fk,p : k, p ≥ 0} with covering radii rk = 1/n as in Section 4 above.

Proposition 5 If the common distribution P of the measurement vectors Xi is supported

on a bounded set S ⊆ Rd, if each Yi ∈ [−1/2, 1/2], and if the regression function f∗ has

continuous partial derivatives of order s ≥ 1 on some open set containing S, then

EL(gn) − L(f∗) = E

[∫
|gn − f∗|2dP

]
≤ C(s, d)

[
log n

n

] 2s
2s+d

,

where the constant C(s, d) is independent of n.
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Results of Stone (1982) show that the rate of convergence obtained here is, within a loga-

rithmic factor, minimax optimal simultaneously for all r. Breiman et al. (1984) and Gordon

and Olshen (1984) gave sufficient conditions for the L2 and a.s. consistency of piecewise con-

stant (e.g., p = 0) regression trees with rectangular cells. Their conditions stipulate that

the cells of the selected partitions must shrink with increasing sample size, and that each

cell must contain a minimum number of measurement vectors. Under additional conditions,

Chaudhuri et al. (1994) established the consistency of piecewise polynomial regression trees

with rectangular cells and fixed local degree p. Each of these results applies to unbounded

response variables under suitable moment restrictions. Nobel (1996) considered the consis-

tency of the general polynomial regression trees described above when the approximation

degree p is fixed.

Proof: We consider, in turn, the estimation and approximation properties of the model

classes Fk,p. For each p ≥ 0, the family Gp is a finite dimensional vector space of functions

on Rd having dimension

p∑

k=0

(
d+ k − 1

d− 1

)

≤ (p+ 1)

(
d+ p− 1

d− 1

)

≤ (d+ p)d+1 .

Thus Gp is a VC-graph class, and the same is true of G̃p. Standard results concerning

VC-graph classes (c.f. Chapter 2 of Pollard (1984)) show that

N(xn
1 , r, G̃p) ≤ apr

−bp ,

where bp = 2(d+ p)d+1 + 4 and ap = e2bp log bp are independent of n and r > 0. Proposition

1 of Nobel (1996) shows further that

N(xn
1 , r,Fk,p) ≤

(
apn

dr−bp

)k
(19)

for each sequence x1, . . . , xn and each r > 0.

Assume without loss of generality that X is supported on S = [0, 1]d. Let k = 2ld where

l ≥ 1 is an integer, and consider the regular dyadic partition π of [0, 1]d into k cells, each of

which is a cube with sides of length 2−l. One can implement π by means of a pair (T, τ),

where T is a balanced binary tree of depth ld.

Fix a cube Ui ∈ π and let zi be its center, that is, the j’th coordinate of zi is the

midpoint of the j’th interval in the Cartesian product that defines Ui. Let M < ∞ bound

each partial derivative of f∗ on some open set containing S. A multivariate Taylor series

expansion of f∗ about zi shows that

f∗(zi + x) =
∑

|α|≤s−1

aαx
α +R(x)

where

|R(x)| ≤M
∑

|α|=s

|xα| .
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If zi + x ∈ Ui then

|R(x)| ≤ ck−s/d

with c = M2−s(s + d)d, and consequently for each i = 1, . . . , k there is a polynomial

gi ∈ Gs−1 such that

max
x∈Ai

|f∗(x) − gi(x)| ≤ ck−s/d .

As |f∗| ≤ 1/2, truncating each gi at +/−1/2 leaves the bound unchanged. Piecing together

these truncated polynomials produces a function f ∈ Fk,s−1 such that

∫
|f − f∗|2dP ≤ c2k−2s/d . (20)

The upper bound of Theorem 2 is an infimum over indices k, p ≥ 0. Fixing p = s and

applying the bounds (19) and (20) above, one finds that

EL(gn) − L(f∗) ≤ C(s, d) inf
k≥0

[
k log n

n
+ k−2s/d

]
.

Optimizing over k gives the desired bound. 2

6 Proofs

Our first lemma is a straightforward modification of some arguments in Lugosi and Zeger

(1995). Recall that L(f) = Eℓ(f(X), Y ), L∗ = inff L(f), and L̂n(f) = n−1∑n
i=1 ℓ(f(Xi), Yi).

Covering numbers and empirical covers are defined in Section 1.1.

Lemma 1 Let F1,F2, . . . be a sequence of finite sets of functions f : Rd → R. Let

(X1, Y1), . . . , (Xn, Yn) ∈ Rd×R be independent replicates of a pair (X,Y ) such that ℓ(f(Xi), Yi) ≤
1 with probability one for all f ∈ ∪∞

k=1Fk. Let

f ′k = arg min
f∈Fk

L(f) and f̂k = arg min
f∈Fk

L̂n(f),

be rules in the k’th class having minimal actual and empirical risk, respectively. Let L′
k =

L(f ′k). Define non-negative complexities Cn(1), Cn(2), . . . by

Cn(k) =

√
log |Fk| + 2 log k

2n
,

and consider the complexity penalized empirical risks

L̃n(f̂k) = L̂n(f̂k) + Cn(k) k = 1, 2, . . . .

If gn = arg min
f̂k:k≥1

L̃n(f̂k) is that function f̂k minimizing L̃n, then

EL(gn) − L∗ ≤ inf
k≥1

[
3.66 · Cn(k) + (L′

k − L∗)
]
.
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Proof: We begin with the decomposition

L(gn) − L′
k =

(
L(gn) − inf

j≥1
L̃n(f̂j)

)
+

(
inf
j≥1

L̃n(f̂j) − L′
k

)
,

which holds for any k ≥ 1. Let ǫ > 0 be arbitrary. Then

P

{
L(gn) − inf

j≥1
L̃n(f̂j) > ǫ

}
≤ P

{

sup
j≥1

(
L(f̂j) − L̃n(f̂j)

)
> ǫ

}

≤
∞∑

j=1

P
{
L(f̂j) − L̂n(f̂j) > ǫ+ Cn(j)

}

≤
∞∑

j=1

P

{

max
f∈Fj

(
L(f) − L̂n(f)

)
> ǫ+ Cn(j)

}

≤
∞∑

j=1

|Fj |e−2n(ǫ+Cn(j))2 (21)

≤
∞∑

j=1

|Fj |e−2nǫ2e−2nCn(j)2

= e−2nǫ2
∞∑

j=1

1

j2
≤ 2e−2nǫ2 ,

where (21) follows from the union bound and Hoeffding’s inequality. Standard bounding

then shows that

E

{
L(gn) − inf

j≥1
L̃n(f̂j)

}
≤ 1√

n
.

On the other hand, if ǫ ≥ 2Cn(k) then

P

{
inf
j≥1

L̃n(f̂j) − L′
k > ǫ

}
≤ P

{
L̃n(f̂k) − L′

k > ǫ
}

≤ P

{
L̂n(f̂k) − L′

k >
ǫ

2

}
(using ǫ ≥ 2Cn(k))

≤ P

{(
L̂n(f ′k) − L(f ′k)

)
>
ǫ

2

}

≤ e−nǫ2/2,

where at the last step Hoeffding’s inequality is used. Consequently,

E

{(
inf
j≥1

L̃n(f̂j) − L′
k

)2
}

=

∫ 1

0
P

{
inf
j≥1

L̃n(f̂j) − L′
k >

√
ǫ

}
dǫ

≤ 4Cn(k)2 +

∫ ∞

4Cn(k)2
e−nǫ/2dǫ

≤ 4Cn(k)2 +
2

nk2|Fk|
≤ 5Cn(k)2.

Therefore,

E

{
inf
j≥1

L̃n(f̂j) − L∗
k

}
≤

√√√√E

{(
inf
j≥1

L̃n(f̂j) − L∗
k

)2
}

≤
√

5Cn(k).
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Collecting bounds, we have

EL(gn) − L′
k ≤

√
5Cn(k) +

1√
n
≤ Cn(k)(

√
5 +

√
2) < 3.66 · Cn(k).

Hence

EL(gn) − L∗ = inf
k≥1

[
EL(gn) − L′

k + (L′
k − L∗)

]

≤ inf
k≥1

[
3.66 · Cn(k) + (L′

k − L∗)
]
.

2

Let Z1, . . . , Zm be i.i.d. replicates of a random vector Z ∈ Rd+1 and let H be a family of

non-negative functions h : Rd+1 → [0,∞) such that h(Z) ≤ 1 with probability one. For

each function h ∈ H, define

Ph = Eh(Z) and P̂mh =
1

m

m∑

i=1

h(Zi) .

Lemma 2 If r̄m is the balanced covering radius (11) of H then

E

[

sup
h∈H

|P̂mh− Ph|
]

≤ 4r̄m .

Proof: Fix a number r > r̄m. Then by definition of r̄m,

r ≥
√

8 log EN (Zm
1 , r/2,H)

m
∨
√

8

m
(22)

By standard symmetrization arguments (c.f. Pollard (1989)),

E

[

sup
h∈H

|P̂mh− Ph|
]

≤ 2E

[

sup
h∈H

∣∣∣∣∣
1

m

m∑

i=1

σih(Zi)

∣∣∣∣∣

]

,

where σ1, . . . , σm are independent sign random variables, independent of the Zi’s, such that

P{σi = 1} = P{σi = −1} = 1/2. According to Pollard (1984, Ch2), for every t > 0,

P

{

sup
h∈H

∣∣∣∣∣
1

m

m∑

i=1

σih(Zi)

∣∣∣∣∣ > t

}

≤ 2EN

(
Zm

1 ,
r

2
,H
)
e−mt2/8.

Therefore,

E

[

sup
h∈H

|P̂mh− Ph|
]

≤ 2r + 4

∫ 1

r
EN

(
Zm

1 ,
r

2
,H
)
e−mt2/8dt

≤ 2r + 4EN

(
Zm

1 ,
r

2
,H
)∫ 1

r
e−mt2/8dt

≤ 2r + 4
√

2EN

(
Zm

1 ,
r

2
,H
)∫ ∞

r/
√

8
e−ms2

(
2 +

1

ms2

)
ds
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= 2r + 4
√

2EN

(
Zm

1 ,
r

2
,H
)[−1

ms
e−ms2

]∞

r/
√

8

= 2r +
16

mr
EN

(
Zm

1 ,
r

2
,H
)
e−mr2/8

≤ 2r +
16

mr
≤ 4r.

The last two inequalities above follow from (22). Taking the infimum over all r > r̄m

establishes the assertion of the Lemma. 2

Lemma 3 If r̄m and r̂m are the balanced covering radius (11) and the balanced empirical

covering radius (6) of H respectively, then

Er̂m ≤ 2r̄m.

Proof: Fix a radius r > r̄m and note that the expected value of r̂m may be bounded as

follows:

Er̂m ≤ r +

∫ ∞

0
P{r̂m > r + t}dt. (23)

If r̂m > r + t, then by definition of r̂m and monotonicity of the covering numbers,

r + t <

√
8 logN (Zm

1 , (r + t)/2,H)

m
∨
√

8

m
≤
√

8 logN (Zm
1 , r/2,H)

m
∨
√

8

m

Combining this last inequality with (22) gives the bound

P{r̂m > r + t} ≤ P






√
8 logN (Zm

1 , r/2,H)

m
∨
√

8

m

>





√
8 log EN (Zm

1 , r/2,H)

m
∨
√

8

m



+ t






≤ P






√
8 logN (Zm

1 , r/2,H)

m
>

√
8 log EN (Zm

1 , r/2,H)

m
+ t




 .

Let ψ(x) = emx2/8. As ψ is monotone increasing, Markov’s inequality implies that the last

probability above is at most

Eψ





√
8 logN (Zm

1 , r/2,H)

m



 ·


ψ





√
8 log EN (Zm

1 , r/2,H)

m
+ t








−1

= EN

(
Zm

1 ,
r

2
,H
)

exp





−m
8





√
8 log EN (Zm

1 , r/2,H)

m
+ t




2





≤ e−mt2/8.
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Now
∫∞
0 e−mt2/8dt =

√
2π/m ≤ r̄m, and therefore (23) shows that Er̂m ≤ r + r̄m. Taking

the infimum over all r > r̄m completes the proof. 2

Proof of Theorem 1: (See Section 3 above for the definition of quantities appearing in the

proof.) If Z1, . . . , Zm are held fixed, then the empirical covers F̂1, F̂2, . . .may be treated as

fixed, finite model classes with cardinalities given by |F̂k| = N(Zm
1 , r̂

(k)
m ,Hk). Conditional

application of Lemma 1 gives the following bound:

EL(gn) − L∗ = EE {L(gn) − L∗|Zm
1 }

≤ E

{
inf
k≥1

(
3.66 · Ĉn−m(k) + (L′

k − L∗)
)}

= E

{
inf
k≥1

(
3.66 · Ĉn−m(k) + (L′

k − L∗
k) + (L∗

k − L∗)
)}

.

Now observe that

L′
k − L∗

k = min
f∈F̂k

L(f) − inf
f∈Fk

L(f)

≤ min
f∈F̂k

L̂m(f) − inf
f∈Fk

L̂m(f) + 2 sup
f∈Fk

|L̂m(f) − L(f)|

≤ r̂(k)
m + 2 sup

h∈Hk

|P̂mh− Ph|.

Therefore, by an applications of Lemmas 2 and 3,

EL(gn) − L∗

≤ E

{

inf
k≥1

[

3.66 · Ĉn−m(k) + r̂(k)
m + 2 sup

h∈Hk

|P̂mh− Ph| + (L∗
k − L∗)

]}

≤ inf
k≥1

[

E
{
3.66 · Ĉn−m(k)

}
+ Er̂(k)

m + 2 sup
h∈Hk

|P̂mh− Ph| + (L∗
k − L∗)

]

≤ inf
k≥1

[
E
{
3.66 · Ĉn−m(k)

}
+ 10r̄(k)

m + (L∗
k − L∗)

]

It remains to consider the expectation of the empirical complexities. As
√
a+ b ≤ √

a+
√
b

and m = n−m = n/2,

Ĉn−m(k) ≤

√
logN(Zm

1 , r̂
(k)
m ,Hk)

2m
+

√
2 log k

n

=
1

4

√
8 logN(Zm

1 , 2r̂
(k)
m /2,Hk)

m
+

√
2 log k

n

≤ 2

4
r̂(k)
m +

√
2 log k

n
,

where the last inequality follows from the definition of r̂
(k)
m and the fact that 2r̂

(k)
m > r̂

(k)
m .

By another application of Lemma 3,

E
{
3.66 · Ĉn−m(k)

}
≤ 3.66 · r̄(k)

m + 5.2

√
log k

n
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and the proof is complete. 2

To prove Theorem 2, we need the following technical lemma:

Lemma 4 Let H be a finite class of functions h : X → R and let Z ∈ X be a random

variable such that 0 ≤ h(Z) ≤ 1 with probability one for all h ∈ H. If Z1, . . . , Zn are i.i.d.

copies of Z, and η, γ, ǫ are positive numbers, then

P

{

min
h∈H:Ph>η+(1+γ)ǫ

P̂nh ≤ η + γǫ

}

≤ |H| exp

[

−3n

8
· ǫ2

η + (1 + γ)ǫ

]

.

Proof: If

max
h∈H

Ph− P̂nh√
Ph

≤ ǫ
√
η + (1 + γ)ǫ

,

then for every h ∈ H,

P̂nh ≥ Ph− ǫ

√
Ph

η + (1 + γ)ǫ
.

As the function x−c√x is monotone increasing for x ≥ c2/4, if in addition Ph > η+(1+γ)ǫ,

then

P̂nh ≥ η + (1 + γ)ǫ− ǫ

√
η + (1 + γ)ǫ

η + (1 + γ)ǫ
= η + γǫ.

Hence

P

{

min
h∈H:Ph>η+(1+γ)ǫ

P̂nh ≤ η + γǫ

}

≤ P

{

max
h∈H

Ph− P̂nh√
Ph

≥ ǫ
√
η + (1 + γ)ǫ

}

≤ |H|max
h∈H

P

{
Ph− P̂nh√

Ph
≥ ǫ
√
η + (1 + γ)ǫ

}

.

It therefore suffices to show that for every h ∈ H,

P

{
Ph− P̂nh√

Ph
≥ θ

}

≤ exp

[

−3n

8
· ǫ2

η + (1 + γ)ǫ

]

,

where θ = ǫ(η + (1 + γ)ǫ)−1/2. Note that the probability on the left-hand side is zero

whenever θ ≥
√
Ph, so we may assume without loss of generality that θ <

√
Ph. Then

P
{
Ph− P̂nh ≥ θ

√
Ph
}

≤ exp

[
−nθ2Ph

2Ph+ (2/3)θ
√
Ph

]

≤ exp

[
−3nθ2

8

]

.

The first inequality above follows from Bernstein’s inequality (see, e.g., Pollard, 1984, p.193)

and the fact that Varh(Z) ≤ Ph. The second follows from the assumption that θ <
√
Ph.

2

Lemma 5 Consider the same situation as in Lemma 1 but now with complexities

Cn(k) = 22 · log |Fk| + 2 log k

n
.
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Let ψn be the candidate rule f̂j minimizing the sum of class complexity and empirical risk.

Then

EL(ψn) ≤ inf
k≥1

(
2Cn(k) + 5L′

k

)
+

106

n
.

Proof: Let f̂k and f ′k be defined as in Lemma 1. In order to establish the stated inequality,

we first derive a probabilistic bound for the difference between L(ψn) and L′
k. For any

number ǫ > 0,

P
{
L(ψn) − L′

k ≥ ǫ
}

=
∞∑

j=1

P
{
L(f̂j) − L′

k ≥ ǫ and ψn = f̂j

}

Set ǫ = 4L′
k + 2δ and consider a single term in the sum. If ψn = f̂j and L(f̂j) − L′

k ≥ ǫ,

then there is a function f ∈ Fj such that

L̃n(f) ≤ L̃n(f̂k) ≤ L̃n(f ′k) and L(f) ≥ 5L′
k + 2δ .

Therefore,

P
{
L(f̂j) − L′

k > 4L′
k + 2δ and ψn = f̂j

}

≤ P

{

inf
f∈Fj :L(f)≥5L′

k
+2δ

L̃n(f) ≤ L̃n(f ′k)

}

= P

{

inf
f∈Fj :L(f)≥5L′

k
+2δ

L̂n(f) ≤ L̂n(f ′k) + (Cn(k) − Cn(j))

}

.

Let A be the event in the last line above. Define additional events

B = {L̂n(f ′k) +Cn(k) − Cn(j) ≥ 0} ,

and

C =
{
2L̂n(f ′k) < 3L′

k + Cn(j) −Cn(k) + δ
}
.

Clearly P(A ∩Bc) = 0, and consequently

P(A) ≤ P(A ∩B ∩ C) + P(Cc) . (24)

A straightforward calculation shows that Var(L̂n(f ′k)) ≤ L′
k/n. It then follows from Bern-

stein’s inequality that

P(Cc) = P
{
2(L̂n(f ′k) − L′

k) ≥ L′
k + δ + Cn(j) − Cn(k)

}

≤ exp

(−n(δ + Cn(j) − Cn(k))

28/3

)

=
k2|Fk|
j2|Fj |

exp

(−nδ
28/3

)
. (25)

If B ∩ C occurs then

2(Cn(j) − Cn(k)) ≤ 2L̂n(f ′k) ≤ 3L(f ′k) + (Cn(j) − Cn(k)) + δ
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which implies

Cn(j) − Cn(k) ≤ 3L′
k + δ .

Thus B ∩ C implies that

5L′
k + 2δ ≥ 2L′

k + (δ + Cn(j) − Cn(k)) .

It follows from these considerations that

P(A ∩B ∩C)

≤ P

{

inf
f∈Fj : L(f)≥2L′

k
+(δ+Cn(j)−Cn(k))

L̂n(f) ≤ 3

2
L′

k +
1

2
(δ + (Cn(j) − Cn(k))+)

}

≤ |Fj | · exp

(−n(δ + Cn(j) − Cn(k))

22

)

≤ k2

j2
|Fk| · exp

(−nδ
22

)

where the second inequality follows from Lemma 4 with η = L′
k, γ = 1, and ǫ = (L′

k + δ +

(Cn(j) − Cn(k))+)/2. Combining the inequality above with (24) and (25) shows that

P{L(f̂j) − L(f ′k) > 4L′
k + 2δ} ≤ 2

k2

j2
|Fk| · exp

(−nδ
22

)

and therefore, by the union bound and by replacing δ with δ/2,

P
{
L(ψn) − L′

k ≥ 4L′
k + δ

}
≤ 2k2|Fk| exp

(−nδ
44

)
·

∞∑

j=1

1

j2

≤ 4k2 · |Fk| exp

(−nδ
44

)
. (26)

Using the last inequality, the expected difference between L(ψn) and L′
k may be bounded

as follows:

E
[
L(ψn) − L′

k

]
≤ E

[
L(ψn) − L′

k

]
+

≤ 4L′
k + u+

∫ ∞

u
P
{
L(ψn) − L′

k ≥ 4L′
k + t

}
dt

≤ 4L′
k + u+ 4k2|Fk|

∫ ∞

u
exp

(−nt
44

)
dt

= 4L′
k + u+

176k2|Fk|
n

∫ ∞

nu/44
e−vdv

≤ 4L′
k +

44 log
(
4ek2|Fk|

)

n
,

where in the last step u is set equal to 44n−1 log(4k|Fk|). It follows that for every k ≥ 1,

EL(ψn) ≤ 5L′
k +

44 log
(
4ek2|Fk|

)

n
≤ 5L′

k + 2Cn(k) +
106

n
,

as desired. 2

The following inequality is due to Pollard (1986), see also Haussler (1992) for the proof.
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Lemma A Let H be a family of functions h : Rd+1 → [0, 1], and let Z1, . . . , Zm ∈ Rd+1 be

i.i.d. random vectors. For each u > 0 and each α ∈ (0, 1),

P

{

sup
h∈H

|Pmh− Ph|
Pmh+ Ph+ u

> α

}

≤ 4EN

(
Zm

1 ,
αu

8
,G
)
e−mα2u/16 .

Lemma 6 Let Fk be a model class, f∗k = arg minf∈Fk
L(f) and L∗

k = L(f∗k ). For each

r > 0,

E
{
L′

k − 2L∗
k

}
≤ 2r +

392 log EN(Zm
1 , r/14,Hk)

m
+

1023

m
.

Proof: We first derive a probabilistic bound for the difference between L′
k and 2L∗

k. If

L′
k − 2L∗

k > 2r+ t for some t > 0, then there exists a prediction rule f ∈ F̂k ⊆ Fk such that

1

m

m∑

i=1

| l(f(Xi), Yi) − l(f∗k (Xi), Yi) | < r and L(f) ≥ L′
k ≥ 2L∗

k + 2r + t.

The first inequality implies L̂m(f) < L̂m(f∗k ) + r, and it follows that

P{L′
k − 2L∗

k > t+ 2r}

≤ P

{

inf
f∈Fk :L(f)>2L∗

k
+2r+t

L̂m(f) < L̂m(f∗k ) + r

}

≤ P

{

inf
f∈Fk :L(f)>2L∗

k
+2r+t

L̂m(f) <
3

2
L∗

k + r +
t

2

}

+ P

{
L̂m(f∗k ) + r ≥ 3

2
L(f∗k ) + r +

t

2

}

≤ P

{

inf
f∈Fk :L(f)>2L∗

k
+2r+t

L̂m(f) <
3

2
L∗

k + r +
t

2

}

+ P

{
L̂m(f∗k ) ≥ 3

2
L(f∗k ) +

t

2

}
. (27)

Bernstein’s inequality implies that the second probability in (27) is at most e−mt/10. To

bound the first, let f ∈ Fk be any prediction rule such that L(f) ≥ 2L∗
k + 2r + t. If in

addition
L(f) − L̂m(f)

L(f) + L̂m(f) + 2(2r + t)
≤ 1

7

then by a straighforward calculation,

L̂m(f) ≥ (2L∗
k + 2r + t)

3

4
− 2r + t

4
. =

3

2
L(f∗k ) + r +

t

2
.

It follows from Lemma A that the first inequality in (27) is at most

P

{

sup
f∈Fk

L(f) − L̂m(f)

L(f) + L̂m(f) + 2(2r + t)
>

1

7

}

≤ 4EN(Zm
1 , r/14,Hk)e−mt/392.
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Summarizing, for each t > 0,

P{L′
k − 2L∗

k > t+ 2r} ≤ 5EN(Zm
1 , r/14,Hk)e−mt/392.

Thus, for every u > 0,

EL′
k − 2L∗

k ≤ 2r +

∫ ∞

0
P{L′

k − L∗
k > t+ 2r}dt

≤ 2r + u+

∫ ∞

u
5EN

(
Zm

1 ,
r

14
,Hk

)
exp

[−mt
392

]
dt

The desired inequality follows by setting u = 392 log (5EN(Zm
1 , r/14,Hk)) /m. 2

Proof of Theorem 2: By conditioning on Zm
1 and applying Lemma 5 one obtains the

bound

EL(ψn) ≤ E

{
inf
k

(
2Cn−m(k) + 5L′

k

)}
+

212

n
.

By Lemma 6 and the definition of the complexities Ĉn(k) the first term on the right hand

side is at most

inf
k

(
88E logN(Zm

1 , rk,Hk)

n
+

176 log k

n
+ 5E

{
L′

k − 2L∗
k

}
+ 10L∗

k

)

≤ inf
k

(
88E logN(Zm

1 , rk,Hk)

n
+

176 log k

n
+ 10rk +

3920 log (EN(Zm
1 , rk/14,Hk))

n

+
10230

n
+ 10L∗

k

)

≤ inf
k

(
4008 log (EN(Zm

1 , rk/14,Hk))

n
+

176 log k

n
+ 10rk + 10L∗

k

)
+

10230

n
,

and the result follows. 2
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